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Topic of today

The title of this talk is the end result. We will subdivide this end
goal in three parts
» Some general notions on normal forms.
» A reminder of sl(2, C)-representations and the construction of
some special sl(2, C)-representations.
» Combine both ideas to obtain our main result.
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> An analytic vector field X = N + f.
» A (nilpotent) linear part N.

> A higher order part f.

» A transformation ®~1 =/ + u.

v

The formal normal form X' = N + g.

X=N+f, X'=N+g

o (X)=N+g
& Xodl=pot X
& (N+f)o(l+u)=D(l+ u).(N+g)
< g+ [u,Nl=f(l+u)— Du.g
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> g+ [u,N]=f(I+u)-Dug

Q>



» g+ [u,N|=f(l+u)—Dug

» This equation is recursively solvable: determine

Uu=u+u3+us+...
g§=8+8g+8g+...
recursively.

Q™



» g+ [u,N|=f(l+u)—Dug

» This equation is recursively solvable: determine

Uu=u+u3+us+...
g=8 +8+ 8 +
recursively.
> Ideally g = 0.

Q™
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» This equation is recursively solvable: determine

Uu=uy+uz+us—+...
g=8+8+8g+...
recursively.
> Ideally g = 0.
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» g+ [u,N|=f(l+u)—Dug

» This equation is recursively solvable: determine

Uu=u+u3+us+...
recursively.

g§=8+8g+8g+...
> Ideally g = 0.

» Obstruction to this if the image of the operator

dos : Vs — Vs :ur [u,N]
is not surjective.

» Complementary space: C5 @ Im(dps) = Vs is needed. How to
choose this space?
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> Suppose N = Aixy Ix1 +.

> do(x* 8")_(0\ o
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> Suppose N = Aixy Ix1 +.

> do(x* 8")_(()\ o

-+ AnXn 8?(
k_0
)‘J)X 2
> dp acts diagonal
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Suppose N = )\1X1% +...+ )\,,x,,a%n
do(x* ) = (A k) — Aj)xk;i
dop acts diagonal.

If Vk,j we have ((\, k) — Aj) # 0, then the procedure is
formally ok.
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v

Suppose N = )\1X1% +...+ )\,,x,,a%n
do(x* ) = (A k) — Aj)xk;i
dop acts diagonal.

If Vk,j we have ((\, k) — Aj) # 0, then the procedure is
formally ok.

v

v

v

v

Convergence if all eigenvalues < 0, or > 0 or satisfy Brjuno
condition.
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v

Suppose N is not semi-simple. Put N in Jordan shape.
Suppose Yk, j we have ((A, k) — \;) #0.

Suppose there is at least one positive and negative eigenvalue.

v
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This leads in a lot of cases to the divergence of the normal
form procedure (even if the eigenvalues satisfy some
diophantine condition).
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Freek Verstringe — Every Gevrey-a vector field with nilpotent linear part admits a Gevrey-
(1 + @) normal form

2. Normal forms — Some history: nilpotent case

» Suppose N nilpotent: all eigenvalues are 0.

» There are a lot of formal results, e.g. by Takens, Sanders,
Cushman, ....

» There is a result in dimension 2 by Strozyna and Zotadek on
the convergence of the Takens normal form. (More geometric
version by F. Loray).

» A lot of formal results exist involving sl(2, C) representations.

» Recent framework (explained below) by Lombardi-Stolovitch
lead to Gevrey-1 normal form in dimensions 2 and 3.

» We combine the recent framework with representation theory
of sl(2,C) to generalize this result to any dimension.
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The Lie operator

» Need to solve the equation

do(us) = [us, N] = 75 (g + f(/ + u) — Du.g)
recursively.

» Choice for the complementary subspace Cs5?

Vs = |m(do) @ Cs.
» Cs : resonant part consisting of resonant terms.
> Cs = ker(dg).
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» Inner product on Ps.
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The complementary subspace

» Inner product on Ps
| 4

< T ot

5 bﬂxﬂ> g
= 1B1=5

s Ia\'
» This induces an inner product on the space Vs_1 of vector
fields of degree 6 — 1 as follows
n
(3 v o w

0
= E Vi, W,
an> k=1< b
Where the V., Wy are elements of P;



Adjoints(1)

» We define M := N* as the adjoint w.r.t. this inner product of

N :Ps — Ps.
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Adjoints(1)

» We define M := N* as the adjoint w.r.t. this inner product of

N :Ps— Ps.

» We define dj as the adjoint w.r.t. this inner product of

do: Vs — Vs.
» The adjoint is completely determined by

(dg(V), W) = (V, do(W)).



Adjoints(2)

To be very precise

NG () |
| @ e
-(%) (%) v (3 v

Or «F»r» «=» «=» = VA
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Recursion process

» The nonzero eigenvalues of L5 = dyod play an important role
> Us = dody is self-adjoint.

Us = dody is diagonizable.

Us = dodg has real positive eigenvalues.
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Recursion process

» The nonzero eigenvalues of L5 = dyod play an important role
> Us = dody is self-adjoint.
Us = dody is diagonizable.
Us = dodg has real positive eigenvalues.
Vs = Im(0s) @ Ker(Os) = Im(dp) ® Ker(dg)
» What about the convergence/divergence of the transformation
I + u and normal form X' = N + g?

vy vy

Q™
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Suppose that X = N + f is formally linearizable and N satisfies a
diophantine condition, then X is also analytically linearizable.
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Theorems by looss-Lombardi and Lombardi-Stolovitch

Theorem

Suppose that X = N + f is formally linearizable and N satisfies a
diophantine condition, then X is also analytically linearizable.

Theorem

Suppose that X = N + f has a formal normal form X’ = N + g by
means of the procedure explained in this section, and suppose that
N satisfies a Siegel condition of order 7, then X’ and U are formal
power series of type Gevrey-(1 + 7).
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Freek Verstringe — Every Gevrey-a vector field with nilpotent linear part admits a Gevrey-
(1 + @) normal form

2. Normal forms — Some theorems

Theorems by looss-Lombardi and Lombardi-Stolovitch

Theorem
Suppose that X = N + f is formally linearizable and N satisfies a
diophantine condition, then X is also analytically linearizable.

Theorem

Suppose that X = N + f has a formal normal form X’ = N + g by
means of the procedure explained in this section, and suppose that
N satisfies a Siegel condition of order 7, then X’ and U are formal
power series of type Gevrey-(1 + 7).

Theorem

Suppose that X = N + f is formally linearizable and N satisfies a
Siegel condition, then there exists an optimal § to stop the normal
form procedure. The transformation

id 4+ u=id+ up + uz + ...+ us transforms the vector field into
X'=N+g +...+ g5+ R and R is exponentially small.
(Technical to state precisely)
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> as square root of the smallest non-zero eigenvalue of [
» Siegel condition of order 7:

o =

< g5 for a certain positive constant C.
» Diophantine condition

ns < cM? for certain positive constants ¢, M.
15 depends on a;, 0 < /i < 4.

» These conditions are automatically satisfied if a5 > Cy > 0;
Cp independent of §.



Some definitions concerning representations of Lie algebras

» A Lie algebra (g,[,]) is a vector space g provided with a
the relations

multiplication [,] : g x g — g : (x,y) — [x, y] that satisfies

[g1,82] = —[82, 81]

(81, (82, &3]] + [g2: g3, g1]] + [g3. [g1, 82]] = 0.
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Some definitions concerning representations of Lie algebras

» A Lie algebra (g,[,]) is a vector space g provided with a

multiplication [,] : g x g — g : (x,y) — [x, y] that satisfies
the relations

(g1, 82] = —[g2, &1]
g1, 82, &3]] + [g2, [g3, &1]] + [g3, [81, 82]] = 0.
» gln(C), the group of n x n-matrices is a Lie algebra with
[A, B] = AB — BA.

» A linear mapping from a general Lie algebra g to gl,(C)
preserving the product structure is called a finite dimensional
representation.
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Representations of sl(2, C)

» sl(2,C) is generated by the matrices

v (08w (20) (1 %),

> [H,N] = 2N, [H,M] = —2M, [N, M] = H

» Every three matrices N’;, M’, H', satisfying the above three
relations determine a representation of sl(2, C).

» sl(2,C) is a simple Lie algebra, this is [g, g] = g.

» Every finite dimensional representation of sl(2,C) can be
written as a direct sum of irreducible representations.



A list of the irreducible representations of sl(2, C)

0n-1 0 0..0
0 0 n=20..0

01 I__ . . .

Bo)= M=l g L oss
00 001
00 000
000 0 .0
A

((1)8)'_”\/’;1:: R
00..n—2 0 0
00.. 0 n-10
n-1 0 00 0
0 n—300



Examples of representations of sl(2, C)

0
(8(1))'—“’&
(99) s x2

Oy

g 0
0 ) [y—. x—
—1) [an’Xay]

(0

Acting on the space Ps of polynomials in x, y of homogeneous
degree 6.
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» Find real values of «; for which the following is a
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6Xn+ 1



Examples of representations of sl(2, C)

» Find real values of «; for which the following is a
representation

(80)

o

0
= Np=a1x0=— + apx3— +.

Ix1 Ox2 L+ O‘nxn—i—la_Xn
. B )
((1)8)'_> N, = Mn—alxla7+a2X26—3—|— -|-O¢nxnw+1
(6 °1) > Hn = [Nn, Ma].
» The sl(2,C)-relations [H, N] = 2N, [H, M] = —2M,
[N, M] = H have to hold
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» Find real values of «; for which the following is a
representation

0 0 0
(3%8)— N, —a1X267+0sz38—2+ +a"x"+18_xn
(OO)HN*IM —OélX]_i—i-OéQXQi—'— Lt apxn———
10 n " Ox2 0x3 T Oy

(6 %) = Hp = [Np, Ma].
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Examples of representations of sl(2, C)

» Find real values of «; for which the following is a
representation

0 o o
(8 (1)) = Ny = Ollxz—ax + 012X38—2 +...+ Oéan+18—Xn
* 0 8 _ 8
(38) = No = Mo = Guxay o Goxa b G

(6 %) = Hp = [Np, Ma].

» The sl(2,C)-relations [H, N] = 2N, [H, M] = —2M,
[N, M] = H have to hold.
» This delivers 2n equations in n unknowns; luckily the

equations generated by [H, N] = 2N are basically the same as
those generated by [H, M] = —2M.

» This delivers a; = \/i(n+1—1).



Matrix of do(zn"'1 Vlax )

Examples of representations of sl(2, C)

N, —az/ 0 0... O 0 Vi
0 N,, —042/ 0.. 0 0 V2
0 e O 0 N, —apl Vi
0 0 0o 0 N, Vi1
Matrix of d (X1 Vi 86 ) as remember that M = N*)
M, 0 0 O0... 0 Vi
—onl M, 0 O 0
0

Vo
... 0 —a,,_ll Mn 0 Vn
0 . 0 0 —anl M Vo1

=
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» This allow to compute the commutator D = [dp, dj];

» D simplifies using the relations between the «;, and the
sl(2, C) relations.

» One computes that [D, dy] = 2dp and [D, di] = 24d;.
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v

This allow to compute the commutator D = [dy, d§];

v

D simplifies using the relations between the «;, and the
sl(2, C) relations.

One computes that [D, do] = 2dp and [D, dj] = 24d.

Hence the triple dp, dj, D generates a representation of
sl(2,C)!

v

v
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Proof of the main theorem

> We need essentially to estimate the smallest
nonzero-eigenvalue of the linear operator
Us : Vs — Vs.
» This needs to be done for all, thus an infinite number, values
of 4.

> In general this is impossible.
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Proof of the main theorem

> We need essentially to estimate the smallest
nonzero-eigenvalue of the linear operator

Us : Vs — Vs.
» This needs to be done for all, thus an infinite number, values
of 4.

> In general this is impossible.

» We prepare the linear part of the vector field to obtain a link
with representation theory.

it
V)
o
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» Prepare the linear part as N, = Y7, i(n+ 1 — i)x;+1%,
using a theorem of Jordan.
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Proof of the main theorem(2)

» Prepare the linear part as N, = Y7, i(n+ 1 — i)x,-+1(%,
using a theorem of Jordan.

> Np, M, .= N, [Np, M,] forms an sl(2,C) triple.
» The associated dy, dj, D := [dp, d§] forms an sl(2, C) triple.
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Proof of the main theorem(2)

v

Prepare the linear part as N, = Y7, i(n+ 1 — i)x,-+1(%,
using a theorem of Jordan.

Np, My, = N, [Np, M,] forms an sl(2,C) triple.
The associated dy, di, D := [dp, d§] forms an sl(2, C) triple.
This representation can be decomposed in irreducible parts.

v
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Proof of the main theorem(2)

» Prepare the linear part as N, = Y7, i(n+ 1 — i)x,-+1a%,

using a theorem of Jordan.
> Np, M, .= N, [Np, M,] forms an sl(2,C) triple.
» The associated dy, dj, D := [dp, d§] forms an sl(2, C) triple.
» This representation can be decomposed in irreducible parts.

» Each of these parts corresponds to the representation
generated by the matrices N}, M, H;.
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» Prepare the linear part as N, =>"7 ; /i(n+1— i)x,-+1a%,

using a theorem of Jordan.
> Np, M, .= N, [Np, M,] forms an sl(2,C) triple.
» The associated dy, di, D := [do, d§] forms an sl(2, C) triple.
» This representation can be decomposed in irreducible parts.

» Each of these parts corresponds to the representation
generated by the matrices N}, M, H;.

» The operator dpdy can be decomposed in irreducible
components. It is essentially dodgy = @k N M,.
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Proof of the main theorem(2)

» Prepare the linear part as N, =>"7 ; /i(n+1— i)x,-+1a%,

using a theorem of Jordan.
> Np, M, .= N, [Np, M,] forms an sl(2,C) triple.
» The associated dy, di, D := [do, d§] forms an sl(2, C) triple.
» This representation can be decomposed in irreducible parts.

» Each of these parts corresponds to the representation
generated by the matrices N}, M, H;.

» The operator dpdy can be decomposed in irreducible
components. It is essentially dodgy = @k N M,.

» Each N Mj has natural numbers as eigenvalues.
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3. Representations of sl(2, C) — Proof of the main theorem

Proof of the main theorem(2)

» Prepare the linear part as N, =>"7 ; /i(n+1— i)x,~+18%i,

using a theorem of Jordan.
> Np, Mp = N}, [Ny, My] forms an sl(2,C) triple.
» The associated dy, di, D := [db, d§] forms an sl(2, C) triple.
» This representation can be decomposed in irreducible parts.

» Each of these parts corresponds to the representation
generated by the matrices N}, M}, H,.

» The operator dpdy can be decomposed in irreducible
components. It is essentially dodfy = G, N, M.

» Each Nj Mj has natural numbers as eigenvalues.

» What about multiple Jordan blocks?
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Conclusion

» Every analytic (resp. Gevrey-a) vector field X = N + f can be
put in normal form by means of a transformation that is
Gevrey-1 (resp. Gevrey-1+ «).

» Every analytic (resp. Gevrey-a) vector field X = N + f that is
formally linearizable can be put in normal form by means of a
transformation that is analytic (resp. Gevrey-1 + «).

» Existence of result with exponentially small remainder.

[} =5 = = = vya (™
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